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ISOSPECTRALITY IN THE FIO CATEGORY

STEVEN ZELDITCH

0. Introduction

Compact riemannian manifolds (M,, g,), resp. (M,, g,), are called
isospectral if there exists a unitary operator U': LZ(MI) — L2(M2) which
intertwines their Laplacians: U AVU* = AP | At this time, quite a variety
of (nonisometric) isospectral pairs have been constructed. On the other
hand, all of these pairs are quite special: to the author’s knowledge, each
known pair has a common riemannian cover, and frequently a common
quotient. These observations raise the questions:

(Q1)—Are isospectral manifolds locally isometric? Do they have a com-
mon riemannian cover?"

(Q2)—Is a generic metric spectrally determined (i.e., not nontrivially
isospectral to another)? Is a metric with simple length spectrum spectrally
determined?

There exist few positive results on these problems at present. Our pur-
pose in this paper is to show that they can be solved (affirmatively) if
we restrict the isospectral problem to the FIO (Fourier Integral Operator)
category. At least, we will show this for (M, g) of dimension d = 2
and curvature K < 0. These dimension and curvature restrictions repre-
sent the current state of knowledge on the isometry problem for conjugate
geodesic flows ([3], [4], [L7]; see below); they should become relaxed as
this knowledge develops further.

Isospectral Laplacians A, and A, will be called isospectral in the FIO
category (or, Fourier-isospectral for short) if there exists a unitary FIO
U intertwining them as above. More precisely, U will be assumed to
lie in the Hormander space IO(M1 x M, , C) for some closed, embedded
canonical relation C — T"M; x 7°M, , such that C o C' is a clean
composition (see §1). To prevent confusion, we emphasize that C is not
assumed to be the graph of a symplectic diffeomorphism (even locally).
Indeed, our first step (§2-3) will be to characterize the canonical relations
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underlying unitary FIO’s and in particular those FIO’s which intertwine a
pair of Laplacians.

Our original motivation for studying Fourier-isospectrality came from
the observation (with A. Uribe) that Sunada’s isospectral Laplacians can be
intertwined by unitary FIO’s. To give some idea of the kinds of canonical
relations that come up in isospectral theory, let.us recall that his isospectral
pairs (M, , M,) fit into a diagram

(0.1)

of finite normal covers. Let H, be the covering group for #;, and G the
covering group for 7. Sunada observes that if LZ(G/HI) and LZ(G/HZ)
are unitarily equivalent G-modules, then, for any metric g, on M,,
7 ( g,) Will be isospectral to 7, ( &) - We add the following observation:
from a unitary intertwining kernel A(g) between these modules, one can
construct such a kernel between the Laplacians (§5). The resulting op-
erator is essentially just the weighted sum > 2cG A(g)my Tgn;‘ of Radon
transforms between M, and M, (T, is the translation associated to g).
The corresponding canonical relation is thus the union (for g € G) of
the conormal bundles N™(graph(z, o g o nl—l)) to graphs of the indicated
correspondences.

Sunada’s examples form in a certain sense the main class of known
isospectral pairs: for, the pairs come in families of positive functional
dimension equal to the dimension of the M;. Moreover, the metric need
not be locally homogeneous, or have any local isometrics. By comparison,
the other known examples still use rather special metrics:(e.g., flat [16],
spherical [12], hyperbolic [19], or (partially) locally solvable [8], [5]):

The next most robust examples. are those of DeTurck-Gordon: (espe-
cially [5]) and Gordon-Wilson. In particular, DeTurck-Gordon construct
isospectral pairs (in fact, continuous families) of quotients M /T", where
M carries an action by a mlpotent Lie group G such that G/I" and
M /T are compact. The metric on M only needs to be invariant under a
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certain subgroup I'H (see [5, Proposition 4.1]). Hence, their examples
also come in families of positive functional dimension, although not of
the dimension of M .

DeTurck-Gordon explicitly construct intertwining operators between
their Laplacians [5, Theorem 2.1]. Recently, F. Marhuenda made a mi-
crolocal analysis of (at least some of) these intertwining operators [15].
They turn out to be a singular FIO’s associated to cleanly intersecting
canonical relations in the sense of Guillemin, Melrose, and Uhlmann. In
particular, they have well-defined and composable principal symbols.

Thus, many of the robust (i.e., highly deformable) known isospectral
pairs live in the FIO category—broadly enough interpreted. We do not
presently know which of the other examples are Fourier-isospectral (al-
though the transplantation examples of Buser and Berard almost certainly
are). However, the remaining examples appear to be isolated among
isospectral pairs, and hence may.be considered sporadic. So, at least ac-
cording to our present knowledge, Fourier-isospectrality provides a kind of
boundary between generic and sporadic isospectralities. It would be very
desirable to have an a priori understanding of this (i.e., not confined to
studying examples). As we will see, the fundamental isospectral problems
can, to a large degree, be reduced to this question of how generically an
isospectrality is Fourier.

Let us now turn to the main results of the this paper. In answer to (Q1),
we have:

(4.1) Theorem. Let (M, g) and (M,, g,) be a pair of Fourier-
isospectral surfaces. If (M, g,) is nonpositively curved, then the (M, g,)
posses a common, finite riemannian cover.

In answer to (Q2), we have:

(4.2) Theorem. Let (M,, g,) be a negatively curved surface with sim-
ple length spectrum. If (M,, g,) is Fourier isospectral to (M,, g,), then
it is isometric to (M, g,).

(Here, Lsp(M, g) is the length spectrum: the set of lengths of closed
geodesics. Simplicity means at most one geodesic has a given length.)

The proofs of these theorems contain two main ingredients. The first
is a symbolic analysis of Fourier-isospectrality (§§1-3). In the case of
surfaces, our result is:

Lemma (see Corollary 3.7(b) and Proposition 3.8). Let (M,, g,) and
(M, , g,) be Fourier-isospectral compact surfaces. Then:

(1) there exists a common finite cover p;: M — l;

(ii) there is a common cyclic cover q;: Q — S; M (S; M being the unit

cotangent bundle for p;(g,)), such that g; only unwinds the circles S; M,
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(iii) there is a diffeomorphism ®: Q — Q so that the correspondence
g oPoq, ! conjugates the geodesic flows (N?ﬁ of p;‘(gi) .

Thus, Fourier-isospectral compact surfaces nearly have smoothly (even
symplectically) conjugate geodesic flows: the flows are conjugate up to cer-
tain finite cyclic covers.

The second main point is to determine when such near conjugacy im-
plies local isometry. The crucial ingredients here are the recent results of
Croke [3], Croke-Fathi-Feldman [4], and Otal [17] on the marked length
spectrum of a nonpositively curved surface. This is the function Lg:

7t (M) — R* on free homotopy classes of loops, which assigns to €
7, (M) the common length L(y) of the closed geodesics y for g in § (y
is unique if K < 0). We will use:

Theorem A [4]. Let M be a closed surface and g, , g, metricson M,
with g, of nonpositive curvature and g, without conjugate points. If g,
and g, have the same marked length spectrum, then they are isometric.

As we will see, the Lemma implies that if (3£, g,) is negatively curved
(say) and (M,, g,) is Fourier-isospectral to (M|, g,), then (M,, g,)
has no conjugate points and has the same marked length spectrum as
(M, , g,). Hence Theorem A will imply Theorem 4.1.

In sum, our point in this paper is that many of the principal questions in
isospectral theory (such as (Q1) and (Q2) can be reduced, at least for broad
enough classes of metrics, to the solvability of the isospectral equation
02 { 8 - 400, ) =0,

U'U-I=0
by Lagrangian distribution U € @' (M | X M,) . Actually, since our results
depend only on a symbolic analysis, it would suffice to solve (0.2) to leading
order.

The main problems suggested by this work seem to be the following:
First, for what class of metrics does symbolic isospectrality imply local
isometry? (Note that Zoll spheres are always symbolically isospectral
[20].) Second, how generically are isospectral pairs generically Fourier-
isospectral? Third, does isospectrality generically imply the microlocal
solvability of (0.1) along products of ax # of closed geodesics of M, x M,
with L(a) = L(B)? (In other words, can one find a solutions U__ P
so the left sides in (0.2) have wavefront set disjoint from o x f#, resp.
axa, B x B.) This question is closely related to Weinstein’s conjecture
that the spectrum determines the Birkhoff-Moser canonical forms for the
Poincaré maps associated to each closed geodesic y (see [7]).



ISOSPECTRALITY IN THE FIO CATEGORY 693

1. Fourier-isospectrality and symbolic isospectrality

Recall that the respective Laplacians AY and AP of compact rieman-
nian manifolds (M, g,) and (M,, g,) are Fourier-isospectral if there
exists an FIO U: Lz(Ml) N (M,) so that

) UAVUT =aA?,
(1.1)
i) U =UU=Id.

By FIO, we mean that the (Schwartz) kernel U(x, y) lies in a space
IO(M1 x M,, C) for some closed, embedded, canonical relation C —
T*M1 X T*MZ_ . C is understood to be homogeneous (i.e., to be invari-
ant under the free R*-action on T"M, x T"M,). We will also assume
that Co C' and Co C' are clean compositions [11, III, 21.2.14]. Here,
C'= {y,n,x,&:(x,&,y,n) € C} is the transposed canonical relation
of C. ‘

We have departed here from the notation C ! in [11, IV, 25.2] to
emphasize that C o C' need not be the diagonal relation., We will depart
from the customary notational conventions of FIO theory in a few other
ways as well. For one, we will view C = T"M, x T*M, as a relation (or
correspondence) from 1M , to T*M2 rather than the reverse. Hence,
we will compose relations in the usual set-theoretic way: relations C, C
T°XxT"Y and C, C T"YxT*Z will compose as C,oC, CT XxT Z.
Further, we will not twist canonical relations as in [11, ITI, 21,2.9] or [11,
IV, 25.2]. These and future departures are necessary in order to conform to
conventions standard outside of FIO theory, and hopefully are transparent
enough not to cause confusion.

The principal symbol of U will be denoted by g, . It is a section of
QIC/ ’® M., where QIC/Z is the bundle of 1/2-densities on C and M. is
the Maslov bundle (a flat, trivializable hermitian line bundle over C). Our
assumptions that U has order ¢ means that g, is homogeneous of order
m/2, where m = dim M, (=dimM,);ie., g, € S™*C, Ql’ ¢ M,).

The isospectral equations (1.1) imply a corresponding set of equations
for the principal symbol data (C, g,). To state them, we first introduce
some terminology and notation. G’ will denote the geodesic flow on 7" M,
(=T"M \0) generated by the norm function ||; of the metric. The prod-
uct flow G} x G, " is then the flow on 7"M, x T"M, of the Hamilton vec-
tor field H, of the difference Hamiltonian f(x,, &, x,, ¢,) = 5,1, — &,

(recall that 7"M~ is T°M equipped with —@, w being the canonical
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symplectic form). Further, o denotes composition for canonical relations
or symbols, E’U denotes the adjoint symbol, Aj;., is the diagonal in
T*M x T*M , and u is its canonical 1/2-density.

The pair (C, g;;) determines what Guillemin-Uribe and Weinstein call
a morphism in the symplectic category: this is the category whose objects
are symplectic manifolds X, Y and whose morphisms are canonical re-
lations C C X x Y equipped with 1/2-densities ¢ € C°°(QIC/2) ([101,
[21]). Following their terminology, we will have:

(1.2) Definition. A morphism (C, o) from T°M, to T M, is uni-
taryif CoC " and C'o C are clean compositions, and if

(D) Ajep, CC'oC,

oyt Hy oD Agey
(i) Gyo0,= .
0 onC'o CAT‘M,

(similarly for Co C' and oy, 0 G).

The simplest example of a unitary morphism is the graph I', of a
symplectic diffeomorphism x: 7*M, — T M, , equipped with its natu-
ral graph 1/2-density (¥ and all other maps are understood to be homo-
geneous). The intertwining operators in §0 provide other examples (see
§5).

We will also have:

(1.3) Definition. A morphism (C, ¢) from T°M, to T°M, is an
intertwining morphism between the geodesic flows G; n T*Mi if:

(1) (Gj1 x Gz:j)gsupp o) = supp oy, .
(i) (G) x G, ) (g,) =0 .
A special case is again the graph I P of a symplectic diffeomorphism

'= G; . There are other examples (see §3).

X, such that yo G‘1 ox
Finally, we will have:
(1.4) Definition. Compact riemannian manifolds (M, g,) and

(M,, g,) are symbolically isospectral if there exists a unitary morphism

(C, o) which intertwines their geodesic flows.

We then have the simple '

(1.5) Propesition. Fourier-isospectrality implies symbolic isospectral-
ity.

Proof. Let U be the unitary intertwining operator in (1.1). Modulo

one technical problem, (1.1)(ii) immediately implies that (C, o) is a

unitary morphism. The technical problem is that C ‘oC and CoC' need
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not be embedded relations, so the usual definitions of 1/2-densities on
them and of the composition formula for EZU o g, need to be modified
(compare [11, IV, 25.2.3]). This complication occurs in the Sunada ex-
ample, so is quite essential. We will deal with it in the appendix to this
section (see (A1.8)). -

Next, rewrite (1.1)(i) in the form (A — AP)U(x,y) = 0. View
(AS) —A;z))U (x,y) asthe composition of a ¥DO on LZ(M1 x M,) and
an FIO from C to LZ(M1 x M,). As an FIO of order 2, its principal
symbol is fo, € NaaEi el QIC/2 ®M_). So fo, =0 and, since C is
Lagrangian, H - must be tangent to C on supp(ag;,).

As an FIO of order 1, its principal symbol is i _I,CZHI(GU) (see [11, IV,

25.2.4]; note that the subprincipal symbol of Ail) — AS) is zero). Hence
.,S”HI(JU) =0, proving 1.3(i)-(ii).

Remarks. (1) Observe that we have not assumed C = supp(ay;). This
temporarily leaves open the possibility that supp(o;,) might be any closed
invariant subset of C for G x G, which can support a smooth function.
Actually, we will show in §2 that the unitarity condition forces supp(ay,)
to be a closed Lagrangian manifold without boundary. At that point, it
will be most sensible to require C = supp(o,) .

(2) Suppose conversely that (C, o) is a symbolic isospectrality between
(M, g,) and (M,, g). Then UA, U — A, is an FIO of order 0 for any
Ue IO(M1 x-M,, C) with o, = 0. In some cases, this conclusion can be
significantly improved. For example, Weinstein has proved that if C is the
graph of a symplectic diffeomorphism, then |4, (M|, g,)—4,,,(M,, &) =
O(1), as n — oo for some integer £ [20]. Here k¥ = ind(U) is the
index of U {(completely mysterious at present). Weinstein’s proof does
not immediately generalize to C which are not graphs.

Appendix to §1

We need to discuss symbol composition when the various simplifying
assumptions in [11, IT1, 25.2.3] and elsewhere are dropped. Hopefully, our
discussion will also make §§2-3 accessible to those not already familiar
with FIO theory.

Let X, = ™M ;» and assume for simplicity that dim M =m (=
1,2,3). Also, let C i X fRe X 111 be a pair of closed, embedded, canon-
ical relations (j =1, 2). The composition C,oC, C X; x X; is just the
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usual set-theoretic composition of relations [11, III, 21.2.12]). It is said to
be clean if the following fiber product is clean:

C, ——— F

(AL1) = | |

XZ CZ
L

where F = {(c|, ¢;) € C; xCy: m\(c;) = my(cy)}, and 7y X, x X, | — X,
is the natural projection. Cleanliness of (Al.1) means that F is a disjoint
union | |; F ; of closed, embedded submanifolds of C; x C, (of possibly
varying dimensions d j), and that the tangent diagram at each f € F is
also a fiber product.

Now let p: F — C, o C, be the natural projection; i.e., the restriction
to F of the projection n, x my: X; x X, x X, x X; — X, x X; onto
the outer factors. If (Al.1) is clean, then p is a map of constant rank 2m
(indeed, dp (T F) is always Lagrangian). Hence p is a local fibration to
its image (compare [11, III, 21.2.14]).

In general, p will fail to be a global fibration due to self-intersections
in C, o C, (example: the Sunada intertwining relations). In order to
compose symbols, we will require that these self-intersections be clean.
More precisely, let {V;} be a finite (homogeneous) cover of F' so that

p|, isafibration onto its image (note that F/ R* is compact). The images
7

B ; def p(Vj) are then open, embedded submanifolds of X, x X,, whose

union is C, o C;. We will refer to them as the “branches” of C, o C;
(relative to the cover).

In general, let us call a map ¢: M — N of constant rank between two
manifolds a clean local fibration (CLF) if there is a cover of M for which
the associated branches B, intersect cleanly (i.e., B;NB, is a submanifold
of N and T,(B; N B,)=T,(B;)NT,(B,)). We then say:

(A1.2) Definition. The composition C, o C, is extra-clean if (Al.1)
is clean, and p: F — C,0 C, is a CLF.

With this assumption, the tangent planes to the branches of C, o C,
never coincide. Hence the manifold AC20 C1 of such tangent planes is an

embedded submanifold of the Lagrangian Grassmannian A(X; x X;).
Here, for any symplectic manifold S, A(S) is the bundle over S whose
fiber at s € § is the Grassmannian A(7,S) of Lagrangian planes of 7.S.
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The natural projection from A(X, x X; ) to X xX; restrictsto A, -

2 1

to determine an immersion i .~ : Ao, — X; x X; . It is the parame-
2 1 2 1

trization of C, o C| by its tangent planes.

Let AC , Tesp. AC2 , similarly denote the manifold of tangent planes
to C, resp C, . The corresponding maps zc are now diffeomorphisms.
Hence, we may view the fiber product F above as a submanifold of A, c,
AC2 . We may also factor the projection p as i Cpoc, OV s where:

(A1.3) Definition. y: F — ACZocl is the map w(4,, 4,) = 4,04,
(i.e., the composition of these subspaces of T(xl &%, 52)(X | X X5 ), T€Sp.
T(xzyiz,xs,is)(X2 x X3) [11, 111, 21.2.12]).

If C,oC, is extra clean, then each y/| F, is a fibration to its image.

We now define a composition law for 1/2-densities: it is a natural
bilinear map

(A1.4) o o QY - 0
l

ACZOCI )
First, identify Q/ / 2 with Ql/ 2. Al /2-density o, on C is thus a

family {c;(4)} of 1 /2-dens1t1es "with o, (A) € Y2 (W) denotes the
space of s-densities on a vector space W) The exterior tensor product

(o, ® al)(llxlz) is then an element of |4, x l2|1/2. In a natural way, it

. 1/2

determines a gadget (0-2®0-1)(}.1x,12) € |Vllx,12|®|}“z°l1| /2 where A x4, €

£, and where V, is the vertical subspace of T, ,, F (tangent to the
]

fibers of ). Since it plays an important role in §§2-3, we give a brief
and rather plebian description of it (see [6, §5] or [11, III, §25] for more

details).
Let S —T(x 5) ; (j=1,2,3). Then 4, x4, C S| x 8§, x8§, xS
and Ti xi, F is the subspace of vectors (¥, v, v, w). The fiber F; over

A x4, 18
the space of (0, v, v, 0)’s. Under (0, v, v, 0) — v, it may be 1dent1ﬁed
with a subspace V' C S, .

Let 7: 4, x 4, — §, be the map t(u, v, v,, w) = v, —v,. Also let
a: T, , F — A0k be ofu,v,,v,,w) = (4, w). Using that Aj is

Ae AC2 oC, is the set {4, x4,: 4,04, = i}, and its tangent space V,

Ay X4,
Lagrangian in Sj X SJ._Jr1 one easily shows that V' = (im 'c)L [6, §5]. So
the symplectic form @, of S, defines a nonsingular pairing between V

and §,/im<7.
We now define (0,Xa,); ,; , forabasis (v, y) of V; ; x4,04, . Here

v is a basis {(0,v,,v,,0):i=1,--,e} for V] iy ? corresponding to
1
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abasis v ={v;} of V,and y={(y,, w,;),i=1,---, 2m} is a basis of
Ayod,.

First, lift 7 to 7 & {(x,,0,0,w)} C T, , F, so that {v,7} is
a basis for Txlxsz- Choose a partial basis g = {(,, Uy 5 Uy W),

k=1,--,2m—e} of 4 x4, so that ﬁdéf {vzk—vlk} is a basis for

imz. Then (v, 7, B) is a basis for 4, x4,. (o, X al)(llxlz)(y , 7, B) is
then well defined but depends on £ . To cancel this dependence, we let
y ={vj:j=1,---, e} be elements of S, so that w,(v,, v;) =0, y"
is uniquely determined modulo im 7. Then set:

(A1.5) Definition.

a2®al(ya ?’ B) X
|32, B)
The right side is independent of B, and defines a mixed density in |V:11 i, |®
|4, 04,2
Finally, (g, 0 g,), € |4|'/* is given by:
(Al1.6) Definition. (0,00)), = fFl(a2 x al)/llx/12 (Ae Aczocl)'
Extending this composition law is a natural bilinear map (Symbol com-
position):

(o5 x ‘71)(,11 xaz)(’V , V)=

. 1/2 1/2 1/2
(ALT) o (Qc ® M) x (Qf 8 M) = Q[ &M,

>
CyoCy

where M is the Maslov line bundle. M

LYY
embedded case [9, IV], as is the identity i*(MC2 KM )= v (M Aczoc,) ,
where i: F — A x A, is the inclusion (cf. [6, 5.3]). The resulting formula
for o is just as in (Al.6) except that f is replaced by o, ®r; (rj being
a Maslov factor), and g, x g, is replaced by (o, X 0,) ® i*(r2 Xr). In
the future, o; will denote a (1/2-density) ® (Maslov factor), and the
formula in Definition A1.6 will be used for principal symbol composition.
(Principal symbols are homogeneous sections of these bundles.)

Now suppose A; € IO(MJ. x M, Cj) is a Lagrangian kernel (j =
1, 2), and suppose C,oC, 1s an extra clean composition. The composition
kernel 4,0 4,(x, y) can thus be written as a (locally) finite sum of oscil-
latory integrals 7 ;= ’ J ajei¢f , where the phase functions ¢ ; parametrize
the branches B ; of C,0C, . The principal symbol of 7/ f is then a section

is defined precisely as in the

of le_,,/_ ‘oM » - These local symbols piece together to form a global section
7 J

1/2 . Lo
0 g0, of the bundle Q/“®AM along the immersion ic,oc, - Henee, g,
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can be identified with a section of QII\/CZOC
sition formula, ¢ dy0d, = 04, ° 04 theri hzolds in the sense of Definition
Al.6 and (A1.7); indeed, it can be localized to open sets where iC20C1 is
an embedding, and hence can be reduced to the embedded case 11, IV,
25.2.3].

Finally, we complete the proof of Proposition 1.5:

(Al1.8) Addendum to Proposition 1.5, The symbols ¢,.,, and o, o

® M .~ - The usual compo-
2 1

o, are now well defined as sections of Q;/J ‘oM B, OVer Aczocl , and

Opey = EtU o ;. We further transport u, and A~ M, t0 the manifold

A, € A(x; x X|') of tangent planes to A;.,, . The unitarity condition
1

(1.1)(ii) then implies that, as symbols along submanifolds of A(X, x X| ),
Oy-y = M,. It follows that A is a connected component of Aczoc, ,

making 1.2(i) more precise. It also follows that EtU o6, =4, on A, and
EIU og, =0 on AC2°C1 \A, , making 1.2(ii) more precise. Similarly for
uu”.

2. Unitary morphisms

A canonical relation C C T"M, x T*M, will be called unitarizable
if there exists a symbol ¢ € (QIC/2 ® M) so that supp(c) = C and so
that (C, g) is a unitary morghism. What kinds of C are unitarizable?
Canonical graphs Fx clearly are, but the Sunada intertwining relations (see
§80 and 5) give nongraph examples. They are, however, local canonical
graphs, and one might suspect that (at least for embedded C) they have
to be.

(2.1) Propoesition. Let C be an embedded (but not necessarily con-
nected) unitarizable canonical relation in T M L % T*Mz. Then the natural
projections

T°M, T" M,
are finite, R*-homogeneous covers.
Proof. Let F be the fiber product in (Al.1) with C, = C and C, =

C'. Thus, F = {(x,,&,y.,1:9,1,%,&): (x,,&,y,n €C}. Asin
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the Appendix to §1, F is the disjoint union | | ; FJ of embedded submani-

foldsin C x C*, and the maps- Ylp: F Lo Ao are fibrations (Definition
J

Al.3).

Let Fy = (it on)_l(AT. Mx) , where i . is, we recall, the immersion
Aq,c — X, x X| taking a tangent plane to its point of tangency. Thus,
F,={(x,¢y,ny,n,x,&:(x,&,y,n) € C}, and it is obvious that
7, is a finite cover if and only if i ow: F, — AT‘Ml is one.

Since C is unitarizable, there is a unitary symbol ¢ on C with supp(o)
= C. By Addendum A1.8, the diagonal A, is then a connected component
of Agroc- Let Fy =y '(A)), and let y, = y|po. Then yy: F, — A,
is a fibration. The theorem clearly reduces to the

(2.2) Claims.

(i) ylf is a finite cover.
(il) FQ=F,.

Proof. (2.2)(i) A point f € F, is of the form f = (z, Z') € C x
C', where z = (x,¢,y,n) and 7= (y,n,x, &) . Identifying C x (o4
with A x A, asin (Al), such an f corresponds to a product 4, x AL,
where A, = T,C is a Lagrangian plane in S| x S, (S, = T(X’C)(T*Ml),
S, = T(y,,,)(T *M,)). FA0 then consists of the 4, x 4; in F, satisfying
Af) ody=4,,where 1, C S xS, isthe diagonal plane.

As with any Lagrangian subspace A, C S| x §,, there are symplectic
orthogonal decompositions S, = S, ® S}, and S, = §,; &€ S,, so that
Ay =25 @Gy @4, , with A ; Lagrangian in S e and with G, the graph of
a symplectic linear map S, — S,, [11, IV, 25.3.6]. For A, x Af) € FAO, the
only possibility is that Ay = G, and ) = 4, = {0}. Consequently, the
vertical space Vlox 2 for 1//2 is {0} : indeed, it is the diagonal in A, x 4,
(cf. Definition A1.3). Thus, ylg is a proper local diffeomorphism, proving
(i).

(2.2)(ii) Suppose to the contrary that FA0 # F, ,and let 4, xlg € FA\FA0 .
The unitary assumption on ¢ then implies that & o ¢ must vanish on
Ao % Ay . By Definition A1.6,

(2.3) 0= (@ % 6) ey (5 7)

F
/10 olg

for any basis y of A;x Af) . This leads to a contradiction, for any density of
the form (' x o) (i lr)(' , ) must be positive. Indeed, in view of Definition
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Al.5, it suffices to show that & x ¢ is a positive density on any product
A x A'. This possibility may be checked on any basis of A x A’; and
of course we choose one of the form {(b,0), (0, b')}, with b a basis
of A and b' the corresponding one of A’ (under the interchange map
5: 8, x8, =8, xS§,). It is immediate from the definition of @ that
@ (b') =aG(b) (cf.[11,1V, 25.1.15 and 25.2.2}; ¢’ is written s*¢” there).
Hence @ xa((b, 0), (0, b")) = |a(b)|* > 0, completing the proof of (2.3).

(2.4) Corollary. Let C C T"M, x T" M, be an embedded canonical
relation, and let a be a unitary symbol on C. Then Supp(o) is a union
of components of C.

Proof. Supp(o) is a finite, homogeneous cover of T * M. , and hence
is a closed, boundaryless submanifold of C of full dimension. q.e.d.

This corollary explains Remark 1 of §1. Henceforth, a unitary mor-
phism will be a pair (C, g) as in Definition 1.2 with C = Suppo .

3. Unitary intertwining morphisms

A unitary morphism C C T°M, x T*M, may be viewed as the graph,
C = l“x , of a finitely multi-valued homogeneous symplectic correspon-
dence x: T°M, - T°M, (x =m,o nl_l in the notation of Proposition
2.1). The invariance condition 1.3(i) on an intertwining morphism imme-
diately translates into
(3.1) XoGy=Gyox.
Thus, a UIM (unitary intertwining morphism) defines, up to some finite
ambiguity, a symplectic conjugacy between the flows. We now resolve this
ambiguity by passing to covers.

First, we give a more precise description of the covers n;: C — T*Mi
arising in Proposition 2.1).

(3.2) Proposition. Let n: C — T*M be a finite, homogeneous cover.
Then there exists a finite cover p: M — M and a homogeneous cyclic
cover q: C — T*M of R"-bundles over M so that n factors as C -5

T*M 2, T*M, where p is the homogeneous cover induced by p, and q
is a diffeomorphism if dimM > 3. .

Proof. Let 7~ be the foliation of 7" M by the (vertical) cotangent
spaces 17" M . The inverse image 777" is then a foliation of C by homo-
geneous manifolds. For each L, ;€ (T, M), = L, ;— T,M must
be a homogeneous cover; so it is a cyclic of some degree d if dimM =2
or a diffecomorphism if dimM > 3.
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Let M be the leaf space C /- '9° . Since 7 isa homogeneous cover,
M is a compact manifold, and the natural projection §: C — M is an

R"-bundle. We may define p: M — M so that the following diagram
commutes:

cC L2 T'M
(3.3) 7| |
M2 M

It is easy to see that p is a cover; so it induces a homogeneous cover
p: T MoT'M.

Finally, we define a map ¢: C — T~ M so that the following diagram
commutes:

W \

"M —2— T*M

M -,
Precisely, for each ¢ € C, ﬁ_l(n(c)) is a finite set {()ch & j)} of covectors
in 7°M with %, # %, for j# k. Weset q(c) = (%, &), where %, is
uniquely determined by §(c) = X, . By construction, g is a homogeneous

cover of R"-bundles over M. g.e.d.
When C C T°M, x T*M, is a unitarizable canonical relation, Propo-
sition 3.2 leads to the covering diagram

C

(3.5) AU
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with the ¢, and p; as in Proposition 3.2. Each connected component of
C gives rise to a similar diagram, so henceforth we fix one, say C;. Via
C, we then define the symplectic correspondence ¥ def g,04q; L. T*Ml —
T*M2 (where the g, are restricted to C,).

X must be a diffeomorphism if dim M, > 3 (this need not imply the
J\Z are diffeomorphic [1]). ¥ may perhaps fail to be a diffeomorphism if
dim M, = 2. However, the AAIJI must be surfaces of the same genus. This
is obvious unless both surfaces have genus g > 2: For that case, we note
that the center Z; of n (T"M,, (x, &) (= n(S™M, (x;,&,))) is gener-
ated by the class z; of the fiber (T*Mi) (x,,8) Similarly, the center Z of
n,(C, c) is generated by the class of the fiber of C — M, (either projec-
tion). Since ¢ is just unwinding the fibers of T*M:. — AZ , the induced
g~ on m, takes Z to Z,, and is an isomorphism from =, (C, ¢)/Z to
ni(T*AAfi s (x;,¢,))/Z; . But it is well known that this quotient is isomor-
phic to 7:1(1\71 ) X;) .

Suppose now that C is a UIM between the geodesic flows Gt on T*M
The metrics g, on M, lift to metrics g, on Ml , and hence the G
lift to geodesic flows (~;f on T*JMJI.. Obviously, ¥ conjugates the hfted
flows. To put this conjugacy in a more familiar form, we slice the R*-
action by defining Q = C, N (S*M, x S*M,). Since the difference norm
S5 €15 X3, &) =161 =&, on T*M, x T*M, vanishes on C, (Propo-
sition 1.5), Q' is just the hypersurface {{éll1 =1} in ;. The maps in
(3.5) therefore restrict to Q to define a diagram

Q
2
S*M, S*M

of compact covers. Equipping S*Ml with its canonical contact form

( Edx ) (3. 6) determines a contact correspondence, still denoted ¥,
from S* M - 8" M From (3.1) we conclude:

(3.7 Corollary Suppose there exists a UIM C between the geodesic
flows G on T*M,. Then the following hold:

(a) If dim M > 3, there must exist ﬁnzte covers p;: M — M and a

1

contact diffeomorphism y: S* M - S M so that ¥ o G oy = Gt

(3.6)
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(b) If dim M = 2, there exist finite covers p;: ]T/fl — M. with ]T/fl = f/fz

14
(diffeomorphic). Further, there exists a common connected cover ¢;: Q —

S*]T/fl. so that q; is a bundle map of S'-bundles over ]T/fl and so that the

contact correspondence y def q,°4; I S"‘fffl — S*]T/fz conjugates the flows
G. .
IWe can sharpen 3.7(b) if the metrics g, have the same area 4. First,
for simplicity we will henceforth denote ﬁl by M and will fix a diffeo-
morphism ¢: ]T/fl — ]\72 . We thus get two metrics, 2, and 9”&, on M,
and hence two unit tangent bundles Sl* M and S; M (say). Replacing g,
by ¢ogq,, we also get a pair of covers Q — S;’M (which we will continue
to denote by g, ; by abuse of notation, we will also denote 9" & by &,)-
(3.8) Proposition. Suppose the metrics g, and g, on M have the
same area. Then there is a contact diffeomorphism ®: Q — Q so that
g, = q, o ®. Hence the flows G; are conjugate via ¥ = g, o @ o ql'1 .
Proof. First, deg(q,) = deg(q,). Indeed, since C is homogeneous

Lagrangian, the canonical 1-forms o’ on S;." M must pull back to the

same 1-form o & q;‘(a(i)) on Q. Hence, qr(a“) AdaVy = q;(a(z) A

da(z)) . Since fQ q; (a(’)/\da(’)) = 2mdeg(g,)4,; , equality of the 4, implies
equality of the deg(q,).

Next, both of the g; are cyclic covers of S !_bundles over M. Equal-
ity of the degrees deg(g,) implies that the subgroups g¢;.(C, ¢) coincide.
In the standard way, we path-lift the projection g, to an isomorphism
®: Q — Q of the covers. Since g, = g, o ®, ® must be a contact diffeo-
morphism.

(3.9) Corollary. Let g, and g, have the same area. Then the geodesic
flows G are covered by contact flows H! on Q, with Hy = ®oHl o ®™".

Proof. The Hamilton vector fields of the norm functions ||, of g, lift

under the g, to contact vector fields Z; on Q. Their flows Hl.’ cover the
Gﬁ and are conjugate via ®@.

4. Proofs of Theorem 4.1 and 4.2
Proof of Theorem 4.1. 'We are given an FIO U conjugating the Lapla-
cians, and hence a UIM C intertwining the geodesic flows Gﬁ (see Propo-
sition 1.5). The surfaces M, therefore have a common cover M (see
Corollary 3.7(b)). Further, the induced metrics g on M must have
the same area (the M, , being isospectral, had the same genus and area).
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Hence, the geodesic flows G; on S; M are conjugate via a contact corre-
sponding ¢, o ®o g, ! , where ¢,: Q — SIM is a finite cover which only
unwraps the circles S; M, ,and @ is a contact diffeomorphism of Q (see
Proposition 3.8). Alternatively, the G; are covered by conjugate contact
flows Hit on ( (see Corollary 3.9).

Now suppose that A has genus g > 2 and that g, is a metric of
nonpositive curvature. In view of {4, Theorem A, §0], we most show
that (A, £,) has no conjugate points and that ® induces a bijection
®,: #,(M) — #,(M) which presents lengths of closed geodesics.

Both steps are relatively straightforward from [3, I, Lemma 3.2]. We
first observe that ® induces an isomorphism ®, on z,(M). Indeed, as
above, the fiber of Q — M (either projection) generates the center Z of
n,(Q). The isomorphism induced by ® on #,(Q) must take Z to Z,
and hence it determines a quotient isomorphism on 7, () . It follows that
®, induces a bijection on 7 (M). We claim that it is length preserving
on closed geodesics. Indeed, let y be a closed geodesic of length L(y) for
(M, &). Liftit to S{M as an orbit (y, 7) of G;. Now, S;M|, (the
unit cotangent bundle along y) is a trivial S ! bundle over 7. So is ol,
(the inverse image of S|, under g,). Further g,: Q|, — SyM]|, is just
the standard d-fold cover on the second factor of y xS b, PxS b Hence,
q, 1(;v, 7) is a set of d orbits of le of period L(y). Under ®, this goes
over to a set of d orbits of H2+ of period L(y), which projectto M as d
(freely homotopic) closed geodesics of length L(y). The reverse argument
also holds, so @, is a length preserving bijection of free homotopy classes
of closed geodesics.

Now, it is well known that on a manifold of nonpositive curvature,
freely homotopic closed geodesics have the same length ([3, I]). Hence
freely homotopic closed geodesics of (M, ,) must have the same length.
It follows that ®, identifies the marked length spectra of (M, &) and
M, 2,).

It remains to show that (M, &,) has no conjugate points. This follows
as long as the lift 7 of each geodesic y of (A4, &,) to the universal is
minimizing [13, II, Theorem 5.7]. As in [3, Lemma 3.2] we argue that j
is minimizing for any closed y because y is the shortest loop in its free
homotopy class. Further, closed geodesics for (A, g,) must be dense in
S;M . Indeed, those for (M, g,) are well known to be dense in S;M
and under q, o ®Pogq, ! the same must hold for &, [loc. cit]. Hence,

minimizing for closed geodesics y implies # minimizing for all y.
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Proof of Theorem 4.2. By Theorem 4.1, (M|, g,) and (M,, g,) havea
common finite negatively curved riemannian cover (M, g). Let p,: M —
M; denote the covering maps. Also let p: M — M denote the universal
covering of M, let Isom(ﬂ ) denote the isometry group of the metric
p*(g), and let I'; denote the deck transformation groups of the covers
p;op: M- M;. Obviously, I'; C Isom(ﬂ ). Since the M; must have
the same genus (by isospectrality), I', is isomorphic to I',. We will now
show that if Lsp(M,, g,) is also simple, then I', =T, .

First, we recall that isospectral manifolds of negative curvature have the
same length spectrum [2]. Indeed, the wave trace formula of [6] gives:

# m/4m

(4.3) TreostVA=)  —L

oy M-
Here, A can be the Laplacian. on any (M, g) whose closed geodesics are
nondegenerate, {y} runs over the closed geodesics, Lf is the primitive
length of y (once around), m, is the Morse index of y, P, is its linear
Poincaré map, and |I — P,| is short for |det(/ — P))|. Since m, =0 for
all y, if (M, g) has negative curvature, all terms in (4.3) are positive.
Hence, Lsp(M, g) = singsupp Tr cost\/_ In particular, Lsp(M,, g,) =
Lsp(M,, g,).

Assumlng Lsp(M,, g,) is simple, we claim that Lsp(M,, g,) is also

simple. To see this, we first observe that (4.3) implies ,
L L
(4.4) = — (L, € Lsp(M,, &),
- P " ,,;ZLE% 1 — Py|'/? |

|1/26(t L,) + smoother .

where a is a closed geodesic of (M, g,), and B is one of (M,, g,)).
Suppose now that « is a primitive closed geodesic, i.e., not an iterate, so
that L = LZ lies in the primitive length spectrum PLsp(Mf,, g,) (lengths
of primitive geodesics). Then L, is also in PLsp(M,, g,). Indeed, if L,
were not primitive for (M,, g,), it would equal kL 5 for some primitive
S . Then Lﬂ would occur as a length La0 in Lsp(M,, g,), with L =

kLaO . By simplicity, a = a’é , a contradiction. Hence LZ =L 5= L, for
each term in (4.4), and we conclude
-2 -1/2 :
@5) =PI =" 3 g-P? (L, ePLsp(M,, g,).
B Lﬁ=L

Next, we claim that |/ — P | = |I — P;| for each # in (4.5); hence, only
one term can occur. To see this, we first note that under the isometric
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correspondence p, o p, L M, — M/, each f in (4.5) must go over to
a. Indeed, p,op, 1( f) must be a union of closed geodesics {a, --- , a,}
of (M, g,). Clearly, each L is a rational multiple of Lﬁ. Hence,

La‘ =mL, /n for some m;, n; € N. By simplicity, a?" = a:"j , SO
all @; must be iterates of a s1mple primitive «,. But o, must be o
since their lengths are rationally related, and both are primitive. Hence
D, op{l(ﬂ) = o as subsets of M.

Now let T,(f) be the tube of radius ¢ around §, and let 7 (a) be the
tube around o. We claim 7 () is isometric to 7,(f) for all # in (4.3)
and for small enough ¢ . Indeed, under p, °, ! £ splits into closed geodesics
{Bl, I Br}, and 7,(f) splits into {T( )}. Pick one component, say

T( B 1) » and consider the covering diagram:

(4.6) T.(B)

These covers are cyclic and riemannian. Since L, = L, they must have
the same degrees. Hence, the deck transformation groups of the p, are
equal. It follows that 7 («) is isometric to T.(8).

This implies | — P | = |I — Pﬂ|. Indeed, lift o (resp. B) to the cor-
responding orbit (a, &) (resp. (B, B)) of Gi on S*M1 (resp. G; on
S*M,). Also, let T (a, &) be the tube of radius ¢ around (o, &) with
respect to the natural metric on S*M, induced from the metric g on M,
and the riemannian connection and (similarly for 7,(8, £)). The isom-
etry from T,(a) to T,(B) has a natural lift to a contact diffeomorphism
from T,(a, &) to T,(B, B) which takes the generator &, of G to E,
for G; . ‘Hence the flows Gf have contact equivalent germs along the or-
bits (a, &) (resp. (B8, B) . In particular, the linear Poincaré cusps P and
Py are linearly symplectically equivalent; and so |I — P | = |[I — Pﬁ|. It
also follows that |I — P | = |I — Pﬂkl forany k=1, 2, --- . Hence, only
one term can occur on the right side of (4.5) even if o is not primitive.
We conclude that Lsp(M,, g,) is simple.

Just as with p, o p, ! above, we now argue that p,op, (a) consists
of a single closed geodesic 8 of (M,, g,) with L = L, . ‘Therefore,



708 STEVEN ZELDITCH

pPyop; ' induces a length preserving bijection between the closed geodesics
of (M,, g) and those of (M, g,). We will see that this forces I', =T, .
Consider the following diagram of riemannian covers:

(4.7) M
|
M

M, M,
Let y € I'; and let A(y) be its axis; i.e., the unique geodesic fixed by y.
Let a(y) = p, o p(A(?)), so that a(y) is a closed geodesic of A, . Under
Dy° pl_1 , a(y) goes to a single closed geodesic b of the same length. It
follows first that (p, o p) Na(y) = (D, op)”'(b). But each component
of (p, op)"l(b) is the axis of some 6 € I',. Hence, for all y € T’
there exists 6 € I, with A4(y) = 4(d). Further, such a J exists with the
same displacement, say d(d), as y. Here, the displacement d(¢) of an
isometry ¢ is given by
d(¢) =1infd(x, #(x)) (d = distance).

Indeed, {6’ € I,: A(0") = A(S)} is just the centralizer (I'y)s of 6 in T,
and (T7,), is a cyclic group, generated by a primitive hyperbolic element
d,. Now, the quotient of A(d) by (I7,), is the closed geodesic b. So
d(d,) = L,, . Similarly the quotient of 4(J) by Iy, is a(y). Since L, =
L, - the generator , of (I')), satisfies d(y,) = d(d;). It follows that
for any y € I'; there exists 6 € I', with A(y) = A(d) and d(y) = d(9).
But an orientation-preserving hyperbolic isometry in two dimensions is
determined by its axis and displacement. Indeed, yé_l would fix all points
on A(J) and therefore on all orthogonal horocircles. Hence it would fix
all of M. o .

It follows that I', CT',. The reverse argument shows I, CT", as well.

5. The Sunada examples

(5.1) Proposition. The Sunada isospectral pairs {(M, , g,), (M,, g,)}
are Fourier-isospectral.
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Proof (with A. Uribe). As discussed in §0, the M, are assumed to fit
into a diagram like (0.1), with L*(G/H,) ~ L*(G/H,) (isomorphic G-
modules).

As is well known, the space of intertwining operators A: LZ(G/HI) -

L? (G/H,) isisomorphic to the space of convolution kernels A(x_1 ¥) with
A € C[H\G/H,] (the double coset space [14, p. 365]). For each such 4,

define U,: L*(M,) — L*(M,) by

(5.2) Usy= g1 H DAy T,m; .
gEG

Here, n;: M — M, are the riemannian covers in (0.1), and T, is trans-

lation by g. Since 7, and T, are local isometries, U, intertwines the

Laplacians A;, and U, is clearly an FIO (cf. §0).

We now observe that A unitary implies U, unitary. To simplify,
we will view Lz(Mi) as the space L’ (M )H" of H-invariant elements of
LZ(M), and U, as an operator from LZ(M)H1 - LZ(M)HZ. Then 7.
becomes }_, H T,, and ©; becomes the inclusion L2(M Y LZ(M ).
We get
(53) UU=g—— S a(g)Ag )T,

T -
1857 8

Set g, = h,g,h, and change variables. Since A(h, 1?le_l) = A(g,), the
sum in (5.3) simplifies (after another change) to

Z A(gl)z(glgz ZA A(&)T, Zé (&)T,
8,8
(by unitarity of 4). Here, d,, is (#Hl_ ) times the characteristic function
1
of H,. U, U, is thus the identity operator on Lot
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